
LTSW 03 S. Gourlay

Erice Workshop Report
LTSW 03

Monterey, CA
November 10 – 12, 2003

S. Gourlay, LBNL



LTSW 03 S. Gourlay

Workshop Goals

• Develop a coherent picture of current status
– Define direction

• Identify issues and priorities for next Workshop on Advanced 
Accelerator Magnets (WAAM)

– Get some work done between now and then
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Working Groups

• Superconducting Magnets in High 
Radiation Environments

– Nikolai Mokhov, FNAL, Chair
– Steve Gourlay, LBNL
– Al Zeller, NSCL
– Deepak Chichili, FNAL
– S. van Sciver, NHMFL

• Fast Cycling Superconducting 
magnets

– Arup Ghosh, BNL, Chair
– Al McInturff, LBNL
– Gebhard Moritz, GSI

• Magnets at the limit of Nb3Sn
– Gian Luca Sabbi, LBNL, Chair
– Davide Tomassini, CERN
– Shlomo Caspi, LBNL
– Michel Segreti, CEA/Saclay
– Tom Taylor, CERN (ret.)
– P. McIntyre, TAMU

• Materials
– Ron Scanlan, LBNL, Chair
– Bruce Strauss, DOE
– Rene Flukiger, U. Geneva
– Ettore Salpietro, EFDA
– Seung Hong, OI-ST Bill Barletta, Workshop Director
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Magnets at the limit of Nb3Sn

Goals
Concentrate on very high field magnets
(LHC upgrade is the most likely application in the “near” term)
Discussion Topics:

- Coil Design
- Mechanical support & assembly
- conductor, operating temperature
- aperture, field quality, dynamic range
- stored energy, inductance
- radiation issues

- magnet cost

Establish R&D targets?
(as for DOE conductor program)
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Proposed Magnet R&D Targets

• Technology:

#1:  Bore field ≥ 18 T with ≥ 5 mm clear bore 
#2:  Bore field ≥ 16 T with ≥ 30 mm clear bore (cold bore included)
#3:  Bore field ≥ 14 T with ≥ 3 m magnetic length

• Dipoles (B0
nom=14 T, harmonics as measured at 10 mm physical radius):

#4:  All central harmonics ≤ 3 units at B0
nom

#5:  All central harmonics ≤ 10 units from 0.1*B0
nom to B0

nom @ LHC R.R.

• Quadrupoles (Gnom=200 T/m, harm. as measured at 20 mm physical radius)

#6:  All central harmonics ≤ 3 units at Gnom
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Materials

Main emphasis for HEP--reduce Deff

• Increase number of subelements (OST, OKAS, Supergenics)

• Use fins to subdivide subelements (OST, OKAS, Supergenics)

• PIT conductor fabrication (SMI, Supercon)

All three approaches can (in principle) produce Deff= 40 microns, with Jc 
near 3000 A/mm2.

Deff = 20 microns may be possible, but it is a big step, requiring more 
R&D

Another method to reduce magnetization at low fields--reduce low field Jc
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Conductor Performance Comparison
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Conductor Summary (Magnet WG)

• A 40% copper fraction may be feasible for RRP wires
• Ic increase by +20% gives +0.5T in HD-1 at 4.2 K
• Well worth pursuing, some risk (drawing, cabling)

• Ic measurements at 1.9 K in 16-18 (20) T range are needed
• Further R&D on keystoned cables required for cosθ designs

• Some work already planned in connection with LARP
• Pay close attention to new conductors (e.g. with SM “technology” tests)
• Smaller filaments are not needed for LARP or present arc dipole R&D

• Rather increase Ic, Jc, stress tolerance for near term R&D and applications
• However, a statement from AP is required regarding LHC upgrade specs
• Also, keep an eye on stability limits

• Much smaller filaments may ultimately be needed - develop in parallel ?
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Nb3Sn for ITER and HEP

• Many common issues

--Jc vs strain behavior
--Radiation damage limits for insulation (and conductor)
--Scale up of production capacity (should reduce costs for both programs

• Conductor programs should be complementary and coordinated
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SC Magnets in a High Radiation 
Environment

• Radiation issues for various machine configurations
– LHC IR Upgrade
– SLHC
– VLHC

• Radiation dose limits for various materials

• Radiation heat-loads in SC magnets

• Cryogenic implications
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Radiation Issues

• Quench stability (peak power density, heat transfer) 
– OK at LHC and SLHC with appropriate protection system

• Dynamic heat loads
– OK at LHC (30 W/quad) and challenging at SLHC (3.5 kW in dipole-

first)

• Radiation damage: 10-yr dose is 20 (LHC) to 50 MGy averaged 
over cable height

– Neutron fluence seems to be not an issue 1016 to 4x1016 cm-2 over 10 
years (3x1017 at SLHC Cosθ)

• Residual dose rates - Hands-on maintenance 
• OK at LHC and challenging at SLHC
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General Radiation Dose Limits

Material Useful limit (MGy)
Copper >104

Iron, Stainless steel >>103

Ceramics >103

Organics ~102

(most sensitive properties)
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Cryogenic Considerations 

• Perspective from LHC point of view

– Accelerator cryoplant: 4 x 18 kW = 72 kW @ 4.5 K

– Beam screen requires 1.7 W/m between 4.6 and 20 K (1.7 W/m x 27 km = 
45.9 kW)

– Remaining ~ 26 kW mostly goes to 1.9 K cooling

– 26 kW converts to ~ 11 kW @ 1.9 K due to lower thermodynamic 
efficiency

– Average 1.9 K heat load on LHC accelerator magnets < 0.4 W/m 

– IR 110 W/4 quads (total = 440 W @ 1.9 K)
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Cryogenics for Luminosity Upgrade 

• Luminosity upgrade from 1034 to 1035 results in increase in beam 
screen heat load from 1.7 W/m to 15 W/m

– Increase total screen load to 405 kW @ 4.6 to 20 K!
– Impact on 1.9 K load on main ring dipoles (0.4 W/m to ~ 0.8 W/m) or ~ 22 kW 

@ 1.9 K
– Can be handled by changes in cooling configuration

• Dipole-First 
– 3.5 kW x 4 dipoles = 14 kW (30 times LHC) at 1.9 K, 4.5 K, higher T?

• Options to consider
– Operating magnets at higher T, but can they be cooled & stabilized?
– Use of HTS would help with overall power requirements if they could operate 

~ 20 K or higher.
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Radiation Loads in SC Magnets

• Main ring magnets ~ total beam energy 0.35 GJ (LHC), 1.1 GJ 
(SLHC), 3.2 GJ (VLHC) and beam loss rate (electron clouds, 
collimation efficiency)

• IR magnets - upgrade energy, not luminosity
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Rad WG Summary

• Generate table
– Characterize various IR designs in terms of radiation environment

• Peak energy deposition
• Fluence
• Dose
• Cryo load

– Define material properties and acceptable design criteria for given dose

• Survey of fusion program results
– Identify relevant information (no duplication)
– Identify areas for focus

• Nb3Sn behavior in LHC IR radiation field
– Develop appropriate tests (magnetization measurements in lieu of direct Jc)

• Identify existing rad hard materials for incorporation into magnet programs

• Focus R&D on what is left
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Fast Cycling SC Magnets

• Focus is on magnets for GSI IAF
– SIS 100 ring cycling to 2 T at 4 T/s
– SIS 200 ring cycling to 4T at 1 T/s

• GSI-001 RHIC-style magnet
– SIS 300 ring cycling to 6T at 1 T/s

• For cos-theta magnets
– Minimize SC magnetization

• Small filament diameter (2.5 micron)
• Suppress proximity-coupling by using Cu-2.5% Mn matrix

– Reduce eddy current magnetization
• High resistive matric Cu-2.5% Mn
• Small twist pitch, practical limit 5 X D
• Jc > 2,500 A/mm2 at 5T
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Fast Cycling SC Magnets

• SC magnets cycling at 1 – 4 T/s are quite feasible

• Develop strand with smaller filament size
– 2.5 – 3.5 micron goal
– Nb3Sn an option?

• Development of single tape “cored” cables
– Eliminate Rc eddy current loss
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